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Abstract

Convergence between social and experimental sciences has been accomplished for
bioarchaeology. That has been possible since archaeological remains can be analyzed
with molecular-biology methodologies, like Polymerase Chain-Reaction (PCR), as well
as nucleic-acid and peptide (protein) sequencing. A revolutionary consequence is the
possibility to bring to life or restore extinct species. That has been a scientific dream for
some years, and now is much more feasible, due to a recent technological
breakthrough. That is known as Clustered Regularly-Interspaced Short-Palindromic
Repeats (CRISPR). In short, it allows to edit genomes, including modern and ancient
ones. Among other examples, current elephant and extinct mammoth genomes could
be compared, to edit the former and to make it to resemble the latter. Thus, CRISPR
technology is becoming certainly exciting, holding a great potential not only in medicine
and plant and animal breeding, but also in bioarchaeology.
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Resumen

La convergencia entre las ciencias sociales y experimentales se ha llevado a cabo
para la bioarqueología. Ello ha sido posible porque los restos arqueológicos pueden
ser analizados con metodologías de biología molecular, como la reacción en cadena
de la polimerasa (PCR), así como la secuenciación de ácidos nucleicos y péptidos
(proteínas). Una consecuencia revolucionaria es la posibilidad de traer a la vida o
restaurar especies previamente extintas. Ello ha representado un sueño científico
desde hace algunos años, siendo ahora mucho más factible, gracias a un significativo
avance tecnológico. Es conocido como repeticiones palindrómicas cortas, agrupadas y
regularmente interespaciadas (CRISPR). En resumen, permite editar genomas,
incluyendo los modernos y antiguos. Entre otros ejemplos, los genomas del elefante
actual y mamut extinto pueden ser comparados, permitiendo editar el primero para
asemejarlo al segundo. Así, la tecnología CRISPR se está convirtiendo en algo
realmente excitante, con gran potencial no solo en medicina y mejora de plantas y
animales, sino también en bioarqueología.

Palabras clave: CRISPR/Cas9, cisgénico, desextinción, paloma migratoria,
arqueobiología.
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Introduction

Interestingly, curiosity has driven human advancements. Indeed, it is
thought that Neanderthals (Homo sapiens neanderthalensis) and other human
subspecies like Denisovans (Homo sapiens denisova) became extinct (Dorado
et al, 2010) because they had less inquisitiveness than modern humans (Homo
sapiens sapiens). This way, the now extinct subspecies lived in fewer locations
when compared to the latter, which extended all over the world. And even then,
we were near extinction at least three times in our biological evolution: i) 1.2
million years ago (Homo sapiens, Homo ergaster, and Homo erectus had a
worldwide population of ~18,000 people); ii) 150,000 years ago (glacial stage,
with only ~600 human survivors); and iii) 70,000 years ago (Toba explosion at
Sumatra, leaving between 1,000 to 10,000 people).

Archaeology is a fascinating research area. Thus, it allows to uncover
ancient events that otherwise would remain unknown. Until recently, such
knowledge subject was considered and classified within social sciences
(including arts and humanities), but now it is also considered within
experimental sciences. That is the case, for instance, of the Journal of
Archaeological Science <http://www.journals.elsevier.com/journal-of-
archaeological-science>, which is indexed in both areas of the Journal Citation
Reports (JCR) of the Web of Science (WoS) - Web of Knowledge (WoK) of
Clarivate Analytics (formerly, Thomson Reuters)
<http://apps.webofknowledge.com>. Such integration has taken place since it is
now possible to analyze archaeological remains using molecular biology
methodologies. That has been accomplished with techniques like Polymerase
Chain-Reaction (PCR), as well as nucleic-acid and peptide sequencing. Such
methodologies have been further potentiated with substantial advancements in
computing, including both hardware (eg., many-core microprocessors) and
software algorithms (bioinformatics). All that brings bioarchaeology to a new
and exciting territory, close to the study of living entities, like viroids, virusoids
viruses and cellular-based ones (prokaryotic and eukaryotic).

An exciting consequence of the convergence between such sciences is
the possibility to bring to life previously extinct species, which was considered
impossible just a few years ago. That is, certainly, a provocative breakthrough.
Welcome to de-extinction (sometimes, wrongly named as resurrection, which
has a different meaning, related to religion). Such a scientific dream is now
much more feasible, thanks to new technological accomplishments, as
described below. Again, human curiosity and innovations are driving scientific
advancements and practical accomplishments...

Clustered regularly-interspaced short-palindromic repeats

Clustered Regularly-Interspaced Short-Palindromic Repeats (CRISPR) is
a revolutionary technology, allowing to edit nucleic-acids in vitro and in vivo
(Mojica and Montoliu, 2016). As with some other technological developments,
the molecular basis of this process was discovered by chance. At such time,
they were considered a mere curiosity (DNA sequences with short and
repetitive nucleotide-base stretches). Indeed, the origin and use of interspacing
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subsequences were not known at such time. Interestingly, it was later on
demonstrated that CRISPR represent the only adaptive immunity system of
prokaryotes (Marraffini, 2015; Jackson et al 2017). On the other hand, Cas9
endonuclease is a four-component system that includes two small RNA
molecules named CRISPR RNA (crRNA), trans-activating CRISPR RNA
(tracrRNA; that binds to crRNA and forms an active complex) and RNase-III
(Barrangou, 2015). That makes the CRISPR-Cas9 system.

In short, when bacteria suffer virus infections, sometimes they can
survive and store parts of such virus genomes, as a kind of molecular memory.
It works this way: i) virus DNA fragments (known as spacers) are stored in
CRISPR arrays, within bacterial genome; ii) spacers are transcribed into small
RNA guides; iii) such guides bind to proteins like “CRISPR-associated protein
9” (Cas9); y iv) the latter is an RNA-guided DNA endonuclease enzyme, that
can recognize and cut DNA hybridizing with the associated RNA template
(previously transcribed from virus DNA). Therefore, such an elegant approach
can recognize and destroy exogenous DNA to which the bacteria was
previously exposed, should a future infection take place (Fig. 1). But, curiously,
not all prokaryotes contain CRISPR systems (Grissa et al 2007; Rousseau et al
2009). Thus, they have been identified in 45% of bacteria and 87% of archaea
genomes sequenced so far (6,782 and 232, respectively), as shown by
“CRISPRs web server” <http://crispr.i2bc.paris-saclay.fr>.

Figure 1. CRISPR/Cas9 bacterial defence system. Cas proteins bind to foreign DNA, allowing
to generate CRISPR arrays containing such sequences, which are further transcribed. Such
RNA is processed by Cas II proteins to generate fragments (crRNA) that bind to Cas III
proteins. This way, the latter RNA can hybridize to exogenous DNA and destroy it, should a
further infection occur. © 2017 Danandmike, Wikimedia Commons
<http://commons.wikimedia.org> and Creative Commons <http://creativecommons.org>.
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Interestingly, this bacterial immunological system can be engineered and
exploited as a powerful and flexible genome-editing tool (Gasiunas et al 2012;
Jinek et al 2012; Singh et al 2016; Yi and Li, 2016; Kan et al 2017). This way,
synthetic guide RNA (gRNA) can be used to direct it towards any genomic site.
Thus, genomic sequences (genes of interest, etc) can be removed or added as
desired. Therefore, CRISPR can be applied to edit genomes without using
nucleic-acids from other species. That way, the resulting constructs would be
cisgenics, instead of transgenics (containing genetic material from other
species).

CRISPR in bioarchaeology

CRISPR could be exploited to edit current genomes, so that they harbor
desired genes from extinct species. That can be accomplished comparing
modern and ancient DNA (aDNA) from such species. Characteristics of interest
may include productivity and resistance to abiotic (flooding, drought, salinity,
high- or low-temperatures, etc) and biotic stresses (diseases and pests). That is
particularly relevant to fight the current trend of global warming and climate
change. Curiously, it is known that Neanderthals and Denisovans had stronger
immune systems than modern humans. Indeed, they inbred with modern
humans, which harbor some of such genes (Dannemann et al 2016;
Deschamps et al 2016). Information about ancient and stronger immune
systems could be exploited, for instance, to make cattle less prone to diseases.

On the other hand, several projects have been proposed to restore
extinct species (Dorado et al 2013). Interestingly, CRISPR has increased the
possibilities of accomplishing such a scientific dream of bringing extinct species
back to life. One of them involves woolly mammoth (Mammuthus primigenius),
which was extinct about 4,000 years ago, probably due to climate change and
human overhunting. Some researchers are trying to use archaeological nuclei
to clone the species, using modern elephants as surrogate gestating females.
Additionally, CRISPR technology could be used to edit current elephant
genomes, to make them cold-resistant and hairy. One approach is using
immature cells that differentiate into sperm or eggs [known as Primordial Germ
Cells (PGC)], to edit modern genomes to resemble extinct counterparts. This
way, a reserve park for them could be created in cold areas, like Siberia.
Another de-extinction project currently being considered involves passenger
pigeon (Ectopistes migratorius). Milliards of such birds were extinct by
excessive human hunting in the late nineteenth century in North America
(Reardon, 2016).

Future prospects and concluding remarks

It is now clear that CRISPR represents a revolution for sciences dealing
with living entities, such as medicine (for instance, to cure diseases like
diabetes), as well as plant and animal breeding. But this powerful technology
also holds a great potential for sciences working with entities or parts of them
that were once alive, like bioarchaeology. In this context, and taking into
account studies of aDNA and cultures of embryos of archaeological maize
(Vásquez et al, 2011), genomes of these and modern ones could be compared,
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to edit the latter to resemble the former, in order to fight abiotic and biotic
stress, increase productivity, etc. In fact, the number of publications about
CRISPR is growing exponentially, as can be seen just by considering the
reviews about it published in 2017, at the time of writing this report (Biagioni et
al 2017; Carroll and Zhou, 2017; Chin et al 2017; Chira et al 2017; Chuai et al
2017; De La Fuente-Núñez and Lu, 2017; Doerflinger et al 2017; Doetschman
and Georgieva, 2017; Fellmann et al 2017; Gee et al 2017; Gerace et al 2017;
Gibson and Yang, 2017; Goren et al 2017; Jiang and Doudna, 2017; Komor et
al 2017; Li et al 2017; Lu et al 2017; Mao et al 2017; Mout et al 2017; Murovec
et al 2017; Puchta, 2017; Puschnik et al 2017; Sayin and Papagiannakopoulos,
2017; Shen et al 2017; Shmakov et al 2017; Stout et al 2017; VanDiemen and
Lebbink, 2017; Zischewski et al 2017). Such exponential growth of publications
resembles other recent revolutions in life sciences, ignited by the development
of breakthrough technologies like PCR, as well as Second-Generation
Sequencing (SGS) and Third-Generation Sequencing (TGS), sometimes known
by the ambiguous name of “Next”-Generation Sequencing (NGS). Interestingly,
they have also had –and have now– revolutionary impacts on bioarchaeology
(Dorado et al 2007-2009, 2011, 2013-2016).

As an example of partial, albeit illustrative examples, CRISPR potential
includes generating desired offspring, avoiding male or female culling (indeed,
eggXYt company <https://www.eggxyt.com> has just announced it for
chickens). Likewise, ensuring that cattle are polled, lacking dangerous long-
horns. Other interesting potential applications are the generation of domestic
animals with CRISPR integrated (CRISPi) into their genomes (not to be
confused with CRISPI, which is a CRISPR Interactive database, as published
by Rousseau et al, 2009). That should allow easier genome editing and
production of pharmaceutical drugs, as proposed for CRISPi chickens. This
technology could also be applied to generate genetically modified mosquitos, to
fight and even eradicate devastating diseases, like dengue or the one caused
by Zika virus. That can be effectively accomplished using gene drives, which
are synthetic selfish-genetic-elements, ensuring that almost all offspring inherit
two copies of the desired gene. Thus, the selected gene effectively spreads
and takes over the population in future generations. For instance, gene drives
have been developed to fight and even eradicate malaria, also known as
paludism (Alphey, 2016), either making mosquitoes resistant to malaria parasite
(Gantz et al 2015) or generating sterile females (Hammond et al 2016). The
first approach would render Anopheles stephensi less prone to transmit
malaria, whereas the second has the potential to exterminate Anopheles
gambiae, effectively wiping out their populations (Reardon, 2016). Indeed, the
latter strategy (albeit, sterilizing males with X rays) has been successful in
eradicating horrible myiasis from some areas, such as the one caused by flesh-
eating fly known as screwworm (Cochliomyia hominivorax) (Kouba, 2004).

Yet another application of CRISPR is the generation of small plants that
can be easily grown as hedges, facilitating mechanical harvesting. Likewise, for
small animals, like micropigs that grow to about 15 kg, for research and as
pets. This technology can also be applied to change the size, color and
patterns of fishes like koi carp. Also, to cats and dogs, including police, guide
and herding ones. The use of CRISPR to design pets has been criticized as
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being frivolous and maybe harming animal well-being. Yet, that is equivalent to
classical Mendelian breeding, and, in fact, CRISPR could be used to remove
undesirable characteristics, as happens with many dog breeds. On the other
hand. rodents, ferrets, marmosets and other monkeys are used as disease
models in biomedical research, and are being modified by CRISPR to better fit
such purposes. A further remarkable example to apply CRISPR for
neuroscience research is the Etruscan shrew (Suncus etruscus), which is the
smallest mammal known, with about 1.8 grams and a tiny brain (Reardon,
2016).

Finally, as with some breakthrough developments, CRISPR raises
bioethical concerns, mostly for germline editing, which should be properly
considered. As a security mechanism, and to prevent unexpected
consequences of releasing genetically-modified plants or animals into the
environment, reverse gene drives have been developed, effectively canceling
out the original constructs. Likewise, ensuring that individuals are sterile, so
that they cannot reproduce should they escape from where they are confined,
like research laboratories, farms, or growing fields (Reardon, 2016). Ultimately,
it is obvious that CRISPR has great potential to improve human life. Yet, to
avoid irrational rejection from the general public, which may have devastating
effects, blocking human technological development and welfare, information
about such technology should be fully disclosed. Additionally, scientists and
educators should also properly explain it, with appropriate political support.
Much as is currently done with transgenic insulin, which is injected into the
body, and yet –of course– saves millions of lives worldwide each single day.
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